Search results
Results from the WOW.Com Content Network
A difference equation of order k is an equation that involves the k first differences of a sequence or a function, in the same way as a differential equation of order k relates the k first derivatives of a function. The two above relations allow transforming a recurrence relation of order k into a difference equation of order k, and, conversely ...
The Mittag-Leffler function can be used to interpolate continuously between a Gaussian and a Lorentzian function. In mathematics, the Mittag-Leffler functions are a family of special functions. They are complex-valued functions of a complex argument z, and moreover depend on one or two complex parameters.
A sequence () is called hypergeometric if the ratio of two consecutive terms is a rational function in , i.e. (+) / (). This is the case if and only if the sequence is the solution of a first-order recurrence equation with polynomial coefficients.
The order of the sequence is the smallest positive integer such that the sequence satisfies a recurrence of order d, or = for the everywhere-zero sequence. [ citation needed ] The definition above allows eventually- periodic sequences such as 1 , 0 , 0 , 0 , … {\displaystyle 1,0,0,0,\ldots } and 0 , 1 , 0 , 0 , … {\displaystyle 0,1,0,0 ...
A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any
Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...
The Gauss-Legendre methods are implicit, so in general they cannot be applied exactly. Instead one makes an educated guess of , and then uses Newton's method to converge arbitrarily close to the true solution. Below is a Matlab function which implements the Gauss-Legendre method of order four.
In one case, A is empty, and in another B is empty, so 2 n − 2 ordered pairs of subsets remain. Finally, since we want unordered pairs rather than ordered pairs we divide this last number by 2, giving the result above. Another explicit expansion of the recurrence-relation gives identities in the spirit of the above example.