enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    If the radix point is not specified, then the string implicitly represents an integer and the unstated radix point would be off the right-hand end of the string, next to the least significant digit. In fixed-point systems, a position in the string is specified for the radix point. So a fixed-point scheme might use a string of 8 decimal digits ...

  3. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.

  4. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string.

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single-precision number is converted to a decimal string with at least 9 ...

  6. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    A common usage of mixed-precision arithmetic is for operating on inaccurate numbers with a small width and expanding them to a larger, more accurate representation. For example, two half-precision or bfloat16 (16-bit) floating-point numbers may be multiplied together to result in a more accurate single-precision (32-bit) float. [1]

  7. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 format, being a shortened IEEE 754 single-precision 32-bit float, allows for fast conversion to and from an IEEE 754 single-precision 32-bit float; in conversion to the bfloat16 format, the exponent bits are preserved while the significand field can be reduced by truncation (thus corresponding to round toward 0) or other rounding ...

  8. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Because E is an integer in the range 0 to 1023, up to 10 bits to the left of the radix point are needed to represent the integer part of the logarithm. Because M falls in the range 1 ≤ M < 2 , the value of log 2 M will fall in the range 0 ≤ log 2 M < 1 so at least 52 bits are needed to the right of the radix point to represent the ...

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    Its integer part is the largest exponent shown on the output of a value in scientific notation with one leading digit in the significand before the decimal point (e.g. 1.698·10 38 is near the largest value in binary32, 9.999999·10 96 is the largest value in decimal32).