Search results
Results from the WOW.Com Content Network
A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of serine/threonine-specific protein kinases involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines.
Mitogen-activated protein kinase 3 (MAPK3) is also known as extracellular signal-regulated kinase 1 (ERK1). Transgenic gene knockout mice lacking MAPK3 are viable and it is thought that MAPK1 can fulfill some MAPK3 functions in most cells. [11] The main exception is in T cells. Mice lacking MAPK3 have reduced T cell development past the CD4 ...
Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) is a dual-specificity kinase enzyme which phosphorylates mitogen-activated protein kinase (MAPK). MAP2K is classified as EC 2.7.12.2. There are seven genes: MAP2K1 (a.k.a. MEK1) MAP2K2 (a.k.a. MEK2) MAP2K3 (a.k.a. MKK3) MAP2K4 (a.k.a. MKK4) MAP2K5 (a.k.a. MKK5) MAP2K6 (a ...
Mitogen Activated Protein (MAP) kinase kinase kinase (MAPKKK, [1] MKKK, [2] M3K, [3] or, MAP3K [4]) is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate.
One of the first proteins known to be phosphorylated by ERK was a microtubule-associated protein (MAP). As discussed below, many additional targets for phosphorylation by MAPK were later found, and the protein was renamed "mitogen-activated protein kinase" (MAPK). The series of kinases from RAF to MEK to MAPK is an example of a protein kinase ...
MAPKK 6 is a member of the dual specificity protein kinase family, which functions as a mitogen-activated protein (MAP) kinase kinase. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This protein phosphorylates and activates p38 MAP kinase in response to ...
Oxidative stress is the most powerfully specific stress activating p38 MAPK. [7] Abnormal activity (higher or lower than physiological) of p38 has been implicated in pathological stresses in several tissues, that include neuronal, [8] [9] [10] bone, [11] lung, [12] cardiac and skeletal muscle, [13] [14] red blood cells, [15] and fetal tissues. [16]
This kinase functions as a mitogen-activated protein kinase (MAP kinase)- activated protein kinase. MAP kinases are also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This kinase was shown to be activated by growth inducers and stress stimulation of cells.