enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    The Persian mathematician, astronomer, philosopher, and poet Omar Khayyám (1050–1123), attempted to prove the fifth postulate from another explicitly given postulate (based on the fourth of the five principles due to the Philosopher , namely, "Two convergent straight lines intersect and it is impossible for two convergent straight lines to ...

  4. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  5. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In geometry, a straight line, usually abbreviated line, ... there is a unique line containing them, and any two distinct lines intersect at most at one point. [1]: ...

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Two straight lines which intersect one another cannot be both parallel to the same straight line. Playfair acknowledged Ludlam and others for simplifying the Euclidean assertion. In later developments the point of intersection of the two lines came first, and the denial of two parallels became expressed as a unique parallel through the given point.

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Given parallel straight lines l and m in Euclidean space, the following properties are equivalent: Every point on line m is located at exactly the same (minimum) distance from line l (equidistant lines). Line m is in the same plane as line l but does not intersect l (recall that lines extend to infinity in either direction).

  8. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  9. Linear space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Linear_space_(geometry)

    Each line is a distinct subset of the points. The points in a line are said to be incident with the line. Each two points are in a line, and any two lines may have no more than one point in common. Intuitively, this rule can be visualized as the property that two straight lines never intersect more than once.