enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .

  3. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  4. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here. The approximation works as long as the width of each subdivision tends to zero.

  5. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The Riemann integral is defined in terms of Riemann sums of functions with respect to tagged partitions of an interval. [21] A tagged partition of a closed interval [a, b] on the real line is a finite sequence

  6. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical methods for ordinary differential equations, such as Runge–Kutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order Runge–Kutta method applied to the differential equation yields Simpson's rule from above.

  7. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    A way to obtain the formula The method's formula can be derived as follows: Consider the function f ( x ) {\displaystyle f(x)} which describes our cross-section of the solid, now the integral of the function can be described as a Riemann integral: ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( a + i Δ x ) Δ x {\displaystyle \int \limits ...

  8. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...

  9. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .