Search results
Results from the WOW.Com Content Network
Extrapolation may also apply to human experience to project, extend, or expand known experience into an area not known or previously experienced. By doing so, one makes an assumption of the unknown [ 1 ] (for example, a driver may extrapolate road conditions beyond what is currently visible and these extrapolations may be correct or incorrect).
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions. The further the extrapolation goes outside the data, the more room there is for the model to fail due to differences between the assumptions and the sample data or the true values.
Data often are missing in research in economics, sociology, and political science because governments or private entities choose not to, or fail to, report critical statistics, [1] or because the information is not available. Sometimes missing values are caused by the researcher—for example, when data collection is done improperly or mistakes ...
This is not the same as reliability, which is the extent to which a measurement gives results that are very consistent. Within validity, the measurement does not always have to be similar, as it does in reliability. However, just because a measure is reliable, it is not necessarily valid. E.g. a scale that is 5 pounds off is reliable but not valid.
Reliability does not imply validity. That is, a reliable measure that is measuring something consistently is not necessarily measuring what you want to be measured. For example, while there are many reliable tests of specific abilities, not all of them would be valid for predicting, say, job performance.
Sample size determination is a crucial aspect of research methodology that plays a significant role in ensuring the reliability and validity of study findings. In order to influence the accuracy of estimates, the power of statistical tests, and the general robustness of the research findings, it entails carefully choosing the number of ...
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. [1] In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimuli, and times.