enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  3. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  4. Outline of probability - Wikipedia

    en.wikipedia.org/wiki/Outline_of_probability

    The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...

  5. Conditional dependence - Wikipedia

    en.wikipedia.org/wiki/Conditional_Dependence

    In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event be 'I have a new phone'; event be 'I have a new watch'; and event be 'I am happy'; and suppose that having either a new phone or a new watch increases the probability of my being happy.

  6. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  7. List of probability topics - Wikipedia

    en.wikipedia.org/wiki/List_of_probability_topics

    This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals.

  8. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Abstractly, naive Bayes is a conditional probability model: it assigns probabilities (, …,) for each of the K possible outcomes or classes given a problem instance to be classified, represented by a vector = (, …,) encoding some n features (independent variables).

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).