Search results
Results from the WOW.Com Content Network
Finding temperature from resistance and characteristics [ edit ] The equation model converts the resistance actually measured in a thermistor to its theoretical bulk temperature, with a closer approximation to actual temperature than simpler models, and valid over the entire working temperature range of the sensor.
The typical operating temperature range of a thermistor is −55 °C to +150 °C, though some glass-body thermistors have a maximal operating temperature of +300 °C. Thermistors differ from resistance temperature detectors (RTDs) in that the material used in a thermistor is generally a ceramic or polymer, while RTDs use pure metals. The ...
The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD). As commonly used for commercial applications of RTD thermometers, the relationship between resistance and temperature is given by the following equations.
Copper has a very linear resistance–temperature relationship; however, copper oxidizes at moderate temperatures and cannot be used over 150 °C (302 °F). [citation needed] The significant characteristic of metals used as resistive elements is the linear approximation of the resistance versus temperature relationship between 0 and 100 °C.
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
The integrated circuit sensor may come in a variety of interfaces — analogue or digital; for digital, these could be Serial Peripheral Interface, SMBus/I 2 C or 1-Wire.. In OpenBSD, many of the I 2 C temperature sensors from the below list have been supported and are accessible through the generalised hardware sensors framework [3] since OpenBSD 3.9 (2006), [4] [5]: §6.1 which has also ...
The temperature dependence of electrical resistance and thus of electronic devices (wires, resistors) has to be taken into account when constructing devices and circuits. The temperature dependence of conductors is to a great degree linear and can be described by the approximation below.
Temperature dependence of the mean free path has an exponential form /. The presence of the reciprocal lattice wave vector implies a net phonon backscattering and a resistance to phonon and thermal transport resulting finite λ L, [50] as it means that momentum is not conserved. Only momentum non-conserving processes can cause thermal resistance.