enow.com Web Search

  1. Ads

    related to: machine learning algorithms using python

Search results

  1. Results from the WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects, simplifying the process for existing software using the .NET platform. Smalltalk has been used extensively for simulations, neural networks, machine learning, and genetic algorithms.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Orange (software) - Wikipedia

    en.wikipedia.org/wiki/Orange_(software)

    Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  7. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  8. Rule induction - Wikipedia

    en.wikipedia.org/wiki/Rule_induction

    [2]: 7 A possible alternative over the ID3 algorithm is genetic programming which evolves a program until it fits to the data. [3]: 2 Creating different algorithm and testing them with input data can be realized in the WEKA software. [3]: 125 Additional tools are machine learning libraries for Python, like scikit-learn.

  9. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.

  1. Ads

    related to: machine learning algorithms using python