Search results
Results from the WOW.Com Content Network
According to Newtonian mechanics, if the gun and shooter are at rest initially, the force on the bullet will be equal to that on the gun-shooter. This is due to Newton's third law of motion (For every action, there is an equal and opposite reaction). Consider a system where the gun and shooter have a combined mass m g and the bullet has a mass m b.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
By conservation of mass, the mass of the gas ejectae will be equal to the original mass of the propellant (assuming complete burning). As a rough approximation, the ejected gas can be considered to have an effective exit velocity of α V 0 {\displaystyle \alpha V_{0}} where V 0 {\displaystyle V_{0}} is the muzzle velocity of the projectile and ...
In 1968, Anderson developed (∂T/∂P) v =(αK)-1 for the thermal gradient, [7] and its reciprocal correlate the thermal pressure and temperature in a constant volume heating process by (∂P/∂T) v =αK. [8] Note, thermal pressure is the pressure change in a constant volume heating process, and expressed by integration of αK.
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.
(Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.