Search results
Results from the WOW.Com Content Network
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
Newton's method is ideal to solve this problem because the first derivative of (), which is an integral of the normal standard distribution, is the normal standard distribution, and is readily available to use in the Newton's method solution.
The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions , which are solutions that exhibit thermodynamic properties analogous to those of an ...
Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...
In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both).
Asymptotic normality, in mathematics and statistics; Complete normality or normal space, Log-normality, in probability theory; Normality (category theory) Normality (statistics) or normal distribution, in probability theory; Normality tests, used to determine if a data set is well-modeled by a normal distribution
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The normal equations can be derived directly from a matrix representation of the problem as follows. The objective is to minimize = ‖ ‖ = () = +.Here () = has the dimension 1x1 (the number of columns of ), so it is a scalar and equal to its own transpose, hence = and the quantity to minimize becomes