enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    To compute the greatest distance D BL at which an observer B can see the top of an object L above the horizon, simply add the distances to the horizon from each of the two points: D BL = D B + D L For example, for an observer B with a height of h B =1.70 m standing on the ground, the horizon is D B =4.65 km away.

  3. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe , giving a distance that does not change in time except due to local factors, such as the motion of a ...

  4. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    The particle horizon is the boundary between two regions at a point at a given time: one region defined by events that have already been observed by an observer, and the other by events which cannot be observed at that time. It represents the furthest distance from which we can retrieve information from the past, and so defines the observable ...

  5. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). [1]

  6. Meridian (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Meridian_(astronomy)

    In astronomy, the meridian is the great circle passing through the celestial poles, as well as the zenith and nadir of an observer's location. Consequently, it contains also the north and south points on the horizon, and it is perpendicular to the celestial equator and horizon.

  7. Meridian altitude - Wikipedia

    en.wikipedia.org/wiki/Meridian_altitude

    By subtracting this from 90°, he would find that the zenith distance is 90°, which is his latitude. Observer C at the same time is at latitude 20°N on the same meridian, i.e. on the same longitude as Observer A. His measured altitude would be 70°, and subtracting this from 90° gives a 20° zenith distance, which in turn is his latitude. In ...

  8. Intercept method - Wikipedia

    en.wikipedia.org/wiki/Intercept_method

    The actual distance from the observer to the geographical position (GP) of a celestial body (that is, the point where it is directly overhead) is "measured" using a sextant. The observer has already estimated his position by dead reckoning and calculated the distance from the estimated position to the body's GP; the difference between the ...

  9. Horizontal coordinate system - Wikipedia

    en.wikipedia.org/wiki/Horizontal_coordinate_system

    Azimuth is measured eastward from the north point (sometimes from the south point) of the horizon; altitude is the angle above the horizon. The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.