enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Aerodynamics

    Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe. Aerodynamic problems can also be classified according to whether the flow speed is below, near or above the speed of sound.

  3. Aerodynamic theory does not predict that bumblebees should be incapable of flight. It is not true that aerodynamic theory predicts that bumblebees should not be able to fly ; the physics of insect flight is quite well understood.

  4. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  5. Aeronautics - Wikipedia

    en.wikipedia.org/wiki/Aeronautics

    The science of aerodynamics deals with the motion of air and the way that it interacts with objects in motion, such as an aircraft. The study of aerodynamics falls broadly into three areas: Incompressible flow occurs where the air simply moves to avoid objects, typically at subsonic speeds below that of sound (Mach 1).

  6. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  8. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The wind frame is a convenient frame to express the aerodynamic forces and moments acting on an aircraft. In particular, the net aerodynamic force can be divided into components along the wind frame axes, with the drag force in the − x w direction and the lift force in the − z w direction.

  9. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    The most familiar type of aerodynamic force is drag. The direction of the drag force is parallel to the relative wind. Typically, the wind turbine parts are moving, altering the flow around the part. An example of relative wind is the wind one would feel cycling on a calm day.