Search results
Results from the WOW.Com Content Network
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
hash GOST: 256 bits hash Grøstl: up to 512 bits hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash ...
Due to their usefulness, they were later included in several other implementations of the C++ Standard Library (e.g., the GNU Compiler Collection's (GCC) libstdc++ [2] and the Visual C++ (MSVC) standard library). The hash_* class templates were proposed into C++ Technical Report 1 (C++ TR1) and were accepted under names unordered_*. [3]
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
Furthermore, a deterministic hash function does not allow for rehashing: sometimes the input data turns out to be bad for the hash function (e.g. there are too many collisions), so one would like to change the hash function. The solution to these problems is to pick a function randomly from a family of hash functions.
algorithm fnv-1 is hash := FNV_offset_basis for each byte_of_data to be hashed do hash := hash × FNV_prime hash := hash XOR byte_of_data return hash. In the above pseudocode, all variables are unsigned integers. All variables, except for byte_of_data, have the same number of bits as the FNV hash. The variable, byte_of_data, is an 8-bit ...
Furthermore, a deterministic hash function does not allow for rehashing: sometimes the input data turns out to be bad for the hash function (e.g. there are too many collisions), so one would like to change the hash function. The solution to these problems is to pick a function randomly from a large family of hash functions. The randomness in ...