Search results
Results from the WOW.Com Content Network
The duck appeared at the bottom right corner of the browser viewport, and attempted to help visitors by listening to their problems and responding with solutions. However, the duck merely produced a quack sound after apparently thinking and typing. It referenced rubber ducking as a powerful method for solving problems. [8]
CS32 (Computational Thinking and Problem Solving), taught by Michael D. Smith, [29] is an alternative to CS50 but does not have a free online version. [30] The next course in sequence after CS32 or CS50 is CS51: Abstraction and Design in Computation, instructed by Stuart M. Shieber with Brian Yu as co-instructor. [31]
David Jay Malan (/ m eɪ l ɛ n /) is an American computer scientist and professor. Malan is a Gordon McKay Professor of Computer Science at Harvard University, and is best known for teaching the course CS50, [2] [3] which is the largest open-learning course at Harvard University and Yale University and the largest massive open online course at EdX, with lectures being viewed by over a million ...
Artelys Knitro is a commercial software package for solving large scale nonlinear mathematical optimization problems. KNITRO – (the original solver name) short for " N onlinear I nterior point T rust R egion O ptimization" (the "K" is silent) – was co-created by Richard Waltz, Jorge Nocedal , Todd Plantenga and Richard Byrd.
Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. [1] In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. [ 2 ]
The subset sum problem (SSP) is a decision problem in computer science.In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1]
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
Variable elimination and the simplex algorithm are used for solving linear and polynomial equations and inequalities, and problems containing variables with infinite domain. These are typically solved as optimization problems in which the optimized function is the number of violated constraints.