Search results
Results from the WOW.Com Content Network
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem.
Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. The area of a parallelogram is twice the area of a triangle created by one of its diagonals. The area of a parallelogram is also equal to the magnitude of the vector cross product of two adjacent sides.
More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular. [ 3 ] A convex quadrilateral with diagonal lengths p {\displaystyle p} and q {\displaystyle q} and bimedian lengths m {\displaystyle m} and n {\displaystyle n} is equidiagonal if and only if [ 4 ] : Prop.1
Parallelogram law – Sum of the squares of all 4 sides of a parallelogram equals that of the 2 diagonals Ptolemy's inequality – inequality relating the six distances between four points on a plane Pages displaying wikidata descriptions as a fallback
An example of an RRPR, or inverted slider-crank, linkage. Planar four-bar linkages are constructed from four links connected in a loop by four one- degree-of-freedom joints. A joint may be either a revolute joint – also known as a pin joint or hinged joint – denoted by R, or a prismatic joint – also known as a sliding pair – denoted by ...