Search results
Results from the WOW.Com Content Network
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
Integral calculus is the study of the definitions, properties, and applications of two related concepts, the indefinite integral and the definite integral. The process of finding the value of an integral is called integration. [46]: 508 The indefinite integral, also known as the antiderivative, is the inverse operation to the derivative.
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The mean value theorem gives a relationship between values of the derivative and values of the original function. If f ( x ) is a real-valued function and a and b are numbers with a < b , then the mean value theorem says that under mild hypotheses, the slope between the two points ( a , f ( a )) and ( b , f ( b )) is equal to the slope of the ...
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 ...
The function f(x) is called the integrand, the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [a, b], called the interval of integration. [18] A function is said to be integrable if its integral over its domain is finite. If limits are specified, the integral is called a ...
The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. [1] The process of finding a derivative is called differentiation.
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]