enow.com Web Search

  1. Ad

    related to: measurement system noise high frequency range table

Search results

  1. Results from the WOW.Com Content Network
  2. Audio noise measurement - Wikipedia

    en.wikipedia.org/wiki/Audio_noise_measurement

    Audio noise measurement is a process carried out to assess the quality of audio equipment, such as the kind used in recording studios, broadcast engineering, and in-home high fidelity. In audio equipment noise is a low-level hiss or buzz that intrudes on audio output.

  3. Audio system measurements - Wikipedia

    en.wikipedia.org/wiki/Audio_system_measurements

    A component having a 'flat' frequency response will not change the weighting (i.e., intensity) of signal content across the specified frequency range. The frequency range often specified for audio components is between 20 Hz to 20 kHz, which broadly reflects the human hearing range (the highest audible frequency for most people is less than 20 ...

  4. ITU-R 468 noise weighting - Wikipedia

    en.wikipedia.org/wiki/ITU-R_468_noise_weighting

    The human ear responds quite differently to clicks and bursts of random noise, and it is this difference that gave rise to the CCIR-468 weighting curve (now supported as an ITU standard), which together with quasi-peak measurement (rather than the rms measurement used with A-weighting) became widely used by broadcasters throughout Britain ...

  5. A-weighting - Wikipedia

    en.wikipedia.org/wiki/A-weighting

    A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]

  6. Loudspeaker measurement - Wikipedia

    en.wikipedia.org/wiki/Loudspeaker_measurement

    Loudspeaker measurement is the practice of determining the behaviour of loudspeakers by measuring various aspects of performance. This measurement is especially important because loudspeakers, being transducers, have a higher level of distortion than other audio system components used in playback or sound reinforcement.

  7. Acoustical measurements and instrumentation - Wikipedia

    en.wikipedia.org/wiki/Acoustical_measurements...

    Expressed in decibels, the dynamic range is 20 log (Vmax/Vmin). For example, a device with an input range of ±10 V and a dynamic range of 110 dB will be able to measure a signal as small as 10 μV. Thus, the input range and the specified dynamic range are important for determining the needs of your instrumentation system.

  8. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    The dynamic range is much larger than fixed-point but at a cost of a worse signal-to-noise ratio. This makes floating-point preferable in situations where the dynamic range is large or unpredictable. Fixed-point's simpler implementations can be used with no signal quality disadvantage in systems where dynamic range is less than 6.02m.

  9. Audio analyzer - Wikipedia

    en.wikipedia.org/wiki/Audio_Analyzer

    An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more.

  1. Ad

    related to: measurement system noise high frequency range table