enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. [1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix.

  3. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

  4. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

  5. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...

  6. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...

  7. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...

  8. Models of DNA evolution - Wikipedia

    en.wikipedia.org/wiki/Models_of_DNA_evolution

    As a result, it has a unique stationary distribution = {,}, where corresponds to the proportion of time spent in state after the Markov chain has run for an infinite amount of time. In DNA evolution, under the assumption of a common process for each site, the stationary frequencies π A , π G , π C , π T {\displaystyle \pi _{A},\,\pi _{G ...

  9. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A state diagram for a simple example is shown in the figure on the right, using a directed graph to picture the state transitions. The states represent whether a hypothetical stock market is exhibiting a bull market , bear market , or stagnant market trend during a given week.