Search results
Results from the WOW.Com Content Network
PageRank is a way of measuring the importance of website pages. According to Google: PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites. [1]
Fig.1. Google matrix of Wikipedia articles network, written in the bases of PageRank index; fragment of top 200 X 200 matrix elements is shown, total size N=3282257 (from [1]) A Google matrix is a particular stochastic matrix that is used by Google's PageRank algorithm. The matrix represents a graph with edges representing links between pages.
For example, if a query returns two results with scores 1,1,1 and 1,1,1,1,1 respectively, both would be considered equally good, assuming ideal DCG is computed to rank 3 for the former and rank 5 for the latter. One way to take into account this limitation is to enforce a fixed set size for the result set and use minimum scores for the missing ...
Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.
Google PageRank (Google PR) is one of the methods Google uses to determine a page's relevance or importance. Important pages receive a higher PageRank and are more likely to appear at the top of the search results. Google PageRank (PR) is a measure from 0 - 10. Google PageRank is based on backlinks.
For example, the number of words in a query. Some examples of features, which were used in the well-known LETOR dataset: TF, TF-IDF, BM25, and language modeling scores of document's zones (title, body, anchors text, URL) for a given query; Lengths and IDF sums of document's zones; Document's PageRank, HITS ranks and their variants.
Numeric examples of PageRank values in a small graph with a damping factor of 0.85. The exact solution is: ... Description=Numeric examples of PageRanks in a small ...
In graph theory, eigenvector centrality (also called eigencentrality or prestige score [1]) is a measure of the influence of a node in a connected network.Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes.