Search results
Results from the WOW.Com Content Network
The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
The Bowen ratio is calculated by the equation: =, where is sensible heating and is latent heating. In this context, when the magnitude of is less than one, a greater proportion of the available energy at the surface is passed to the atmosphere as latent heat than as sensible heat, and the converse is true for values of greater than one.
The latent heat with respect to volume can also be called the 'latent energy with respect to volume'. For all of these usages of 'latent heat', a more systematic terminology uses 'latent heat capacity'. The heat capacity at constant volume is the heat required for unit increment in temperature at constant volume.
The energy needed to evaporate the water is taken from the air in the form of sensible heat and converted into latent heat, while the air remains at a constant enthalpy. Latent heat describes the amount of heat that is needed to evaporate the liquid; this heat comes from the liquid itself and the surrounding gas and surfaces.
On the other hand, the molar specific heat at constant volume of a monatomic classical ideal gas, such as helium at room temperature, is given by C V = (3/2)R with R the molar ideal gas constant. But clearly a constant heat capacity does not satisfy Eq. . That is, a gas with a constant heat capacity all the way to absolute zero violates the ...