enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Bent's rule is able to characterize molecule geometry with accuracy. [11] [5] Bent's rule provides a reliable and robust framework for predicting the bond angles of molecules. Bent's rule accuracy and precision in predicting the geometry of real-world molecules continues to demonstrate its credibility.

  3. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Shows location of unpaired electrons, bonded atoms, and bond angles. The bond angle for water is 104.5°. Valence shell electron pair repulsion ( VSEPR ) theory ( / ˈ v ɛ s p ər , v ə ˈ s ɛ p ər / VESP -ər , [ 1 ] : 410 və- SEP -ər [ 2 ] ) is a model used in chemistry to predict the geometry of individual molecules from the number of ...

  4. Bent bond - Wikipedia

    en.wikipedia.org/wiki/Bent_bond

    This is because according to Bent's rule, the C–F bond gains p-orbital character leading to high s-character in the C–H bonds, and H–C–H bond angles approaching those of sp 2 orbitals – e.g. 120° – leaving less for the F–C–H bond angle. The difference is again explained in terms of bent bonds. [3]

  5. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    AX 2 E 1 molecules, such as SnCl 2, have only one lone pair and the central angle about 120° (the centre and two vertices of an equilateral triangle). They have three sp 2 orbitals. There exist also sd-hybridised AX 2 compounds of transition metals without lone pairs: they have the central angle about 90° and are also classified as bent.

  6. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.

  7. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.

  8. VALBOND - Wikipedia

    en.wikipedia.org/wiki/VALBOND

    The hybridization of the bonding orbitals are obtained from empirical formulas based on Bent's rule, which relates the preference towards p character with electronegativity. The VALBOND functions are suitable for describing the energy of bond angle distortion not only around the equilibrium angles, but also at very large distortions.

  9. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    [17] [18] The familiar alkynes have a carbon-carbon triple bond (bond order 3) and a linear geometry of 180° bond angles (figure A in reference [19]). However, further down in the group (silicon, germanium, and tin), formal triple bonds have an effective bond order 2 with one lone pair (figure B [19]) and trans-bent geometries.