Search results
Results from the WOW.Com Content Network
Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0.. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T.
Let S 1 be the selling price of wheat and S 2 be the selling price of barley, per hectare. If we denote the area of land planted with wheat and barley by x 1 and x 2 respectively, then profit can be maximized by choosing optimal values for x 1 and x 2. This problem can be expressed with the following linear programming problem in the standard form:
General linear programming formulation [ edit ] In the context of linear programming , one can think of any minimization linear program as a covering problem if the coefficients in the constraint matrix , the objective function, and right-hand side are nonnegative. [ 1 ]
In this formulation, the set S is the set of all vertices in both polytopes, and the function value f(A) is the negation of the smallest distance between the convex hulls of the two subsets A of vertices in the two polytopes. The combinatorial dimension of the problem is d + 1 if the two polytopes are disjoint, or d + 2 if they have a nonempty ...
Multi-objective linear programming is a subarea of mathematical optimization. A multiple objective linear program (MOLP) is a linear program with more than one objective function. An MOLP is a special case of a vector linear program. Multi-objective linear programming is also a subarea of Multi-objective optimization.
In mathematical optimization, the fundamental theorem of linear programming states, in a weak formulation, that the maxima and minima of a linear function over a convex polygonal region occur at the region's corners.
However, there is a fractional solution in which each set is assigned the weight 1/2, and for which the total value of the objective function is 3/2. Thus, in this example, the linear programming relaxation has a value differing from that of the unrelaxed 0–1 integer program.
Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7. Fortunately, there are many algorithms for finding the optimal assignment in time polynomial in n.