enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    A derived binary relation between two sets is the subset relation, also called set inclusion. If all the members of set A are also members of set B, then A is a subset of B, denoted A ⊆ B. For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself.

  5. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    If X and Y are finite sets, then there exists a bijection between the two sets X and Y if and only if X and Y have the same number of elements. Indeed, in axiomatic set theory, this is taken as the definition of "same number of elements" (equinumerosity), and generalising this definition to infinite sets leads to the concept of cardinal number ...

  8. Binary relation - Wikipedia

    en.wikipedia.org/wiki/Binary_relation

    As a relation between some temporal events and some spatial events, hyperbolic orthogonality (as found in split-complex numbers) is a heterogeneous relation. [21] A geometric configuration can be considered a relation between its points and its lines. The relation is expressed as incidence. Finite and infinite projective and affine planes are ...

  9. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    For example, in set theory an axiom of extensionality defined two sets to be equal if and only if they have the same elements. Similarly, two functions may be defined to be equal if they return the same outputs for all inputs, regardless of how they are defined or computed, often called an identity. Each of these may be stated symbolically as: