Search results
Results from the WOW.Com Content Network
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
The term reflection is loose, and considered by some an abuse of language, with inversion preferred; however, point reflection is widely used. Such maps are involutions, meaning that they have order 2 – they are their own inverse: applying them twice yields the identity map – which is also true of other maps called reflections.
If x is a reflection point (0, 5, 10, 15, 20, or 25), its stabilizer is the group of order two containing the identity and the reflection in x. In other cases the stabilizer is the trivial group. For a fixed x in X, consider the map from G to X given by g ↦ g · x. The image of this map is the orbit of x and the coimage is the set of all left ...
The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups represents the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.
As an example, consider the dihedral group G = D 3 = Sym(X), where X is an equilateral triangle. We may decorate this with an arrow on one edge, obtaining an asymmetric figure X #. Letting τ ∈ G be the reflection of the arrowed edge, the composite figure X + = X # ∪ τX # has a bidirectional arrow on that edge, and its symmetry group is H ...
A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
On one side, each point is contained in three light rays; on the other side, each point is contained in one light ray. In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or ...