Search results
Results from the WOW.Com Content Network
The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is equal to f(p). If f : M → N is a function between metric spaces M and N, then it is equivalent that f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).
In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object. The mathematical concept of infinity refines and extends the old philosophical concept, in particular by introducing infinitely many different sizes of infinite sets.
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...
On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
Similarly, a regularly varying function is a function of a real variable whose behaviour at infinity is similar to the behaviour of a power law function (like a polynomial) near infinity. These classes of functions were both introduced by Jovan Karamata , [ 1 ] [ 2 ] and have found several important applications, for example in probability theory .
A function is continuous on a semi-open or a closed interval; if the interval is contained in the domain of the function, the function is continuous at every interior point of the interval, and the value of the function at each endpoint that belongs to the interval is the limit of the values of the function when the variable tends to the ...
A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...