Search results
Results from the WOW.Com Content Network
PSI-Plot features an Excel-style spreadsheet where users can manage and analyze their data, perform various numerical calculations, solve their equations, and visualize their data in 2D and 3D graphics. Users can also import their data from various formats including Microsoft Excel, ASCII, CSV, Microsoft Access, and dBase.
The Mott–Schottky equation relates the capacitance to the applied voltage across a semiconductor-electrolyte junction. [1]= where is the differential capacitance , is the dielectric constant of the semiconductor, is the permittivity of free space, is the area such that the depletion region volume is , is the elementary charge, is the density of dopants, is the applied potential, is the flat ...
Therefore, a representation of the reciprocal square capacitance, is a linear function of the voltage, which constitutes the Mott–Schottky plot as shown in Fig. 1c. The measurement of the Mott–Schottky plot brings us two important pieces of information.
The following Python code can also be used to calculate and plot the root locus of the closed-loop transfer function using the Python Control Systems Library [14] and Matplotlib [15]. import control as ct import matplotlib.pyplot as plt # Define the transfer function sys = ct .
Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: The summing node and the G ( s ) and H ( s ) blocks can all be combined into one block, which would have the following transfer function:
The five functions are on the diagonal. The arrows show the flow of data between functions. So if function 1 sends data to function 2, the data elements would be placed in the box to the right of function 1. If function 1 does not send data to any of the other functions, the rest of the boxes to right of function 1 would be empty.
A system's behavior can be mathematically modeled and is represented in the time domain as h(t) and in the frequency domain as H(s), where s is a complex number in the form of s=a+ib, or s=a+jb in electrical engineering terms (electrical engineers use "j" instead of "i" because current is represented by the variable i). Input signals are ...
NCSS is a statistics package produced and distributed by NCSS, LLC. Created in 1981 by Jerry L. Hintze, NCSS, LLC specializes in providing statistical analysis software to researchers, businesses, and academic institutions.