Search results
Results from the WOW.Com Content Network
Long chain fatty acids (more than 14 carbon) need to be converted to fatty acyl-CoA in order to pass across the mitochondria membrane. [6] Fatty acid catabolism begins in the cytoplasm of cells as acyl-CoA synthetase uses the energy from cleavage of an ATP to catalyze the addition of coenzyme A to the fatty acid. [6]
Amino acid replacement is a change from one amino acid to a different amino acid in a protein due to point mutation in the corresponding DNA sequence. It is caused by nonsynonymous missense mutation which changes the codon sequence to code other amino acid instead of the original.
The fatty acid structure is one of the most fundamental categories of biological lipids and is commonly used as a building-block of more structurally complex lipids. The carbon chain, typically between four and 24 carbons long, [ 23 ] may be saturated or unsaturated , and may be attached to functional groups containing oxygen , halogens ...
Lipidology is the scientific study of lipids. Lipids are a group of biological macromolecules that have a multitude of functions in the body. [1] [2] [3] Clinical studies on lipid metabolism in the body have led to developments in therapeutic lipidology for disorders such as cardiovascular disease. [4]
Phospholipids [1] are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. [2]
Fatty acid synthesis starts with acetyl-CoA and builds up by the addition of two-carbon units. Fatty acid synthesis occurs in the cytoplasm of cells while oxidative degradation occurs in the mitochondria. Many of the enzymes for the fatty acid synthesis are organized into a multienzyme complex called fatty acid synthase. [5]
Membrane lipids are a group of compounds (structurally similar to fats and oils) which form the lipid bilayer of the cell membrane. The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ...
Glycerol has three hydroxyl functional groups, which can be esterified with one, two, or three fatty acids to form mono-, di-, and triglycerides. [2] These structures vary in their fatty acid alkyl groups as they can contain different carbon numbers, different degrees of unsaturation, and different configurations and positions of olefins.