enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    When the common ratio of a geometric sequence is positive, the sequence's terms will all share the sign of the first term. When the common ratio of a geometric sequence is negative, the sequence's terms alternate between positive and negative; this is called an alternating sequence. For instance the sequence 1, −3, 9, −27, 81, −243 ...

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    This is also known as the nth-term test, ... each element of the two sequences is positive) ... is a geometric series with ratio ...

  5. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...

  6. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:

  7. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  8. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    One such notation is to write down a general formula for computing the nth term as a function of n, enclose it in parentheses, and include a subscript indicating the set of values that n can take. For example, in this notation the sequence of even numbers could be written as ( 2 n ) n ∈ N {\textstyle (2n)_{n\in \mathbb {N} }} .

  9. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The maximum number of pieces, p obtainable with n straight cuts is the n-th triangular number plus one, forming the lazy caterer's sequence (OEIS A000124) One way of calculating the depreciation of an asset is the sum-of-years' digits method, which involves finding T n, where n is the length in years of the asset's useful life.