Search results
Results from the WOW.Com Content Network
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...
The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.
The strong Markov property is a generalization of the Markov property above in which t is replaced by a suitable random time τ : Ω → [0, +∞] known as a stopping time. So, for example, rather than "restarting" the process X at time t = 1, one could "restart" whenever X first reaches some specified point p of R n.
Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...
In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties.
Then we can apply the strong Markov property to deduce that a relative path subsequent to , given by := (+), is also simple Brownian motion independent of . Then the probability distribution for the last time W ( s ) {\displaystyle W(s)} is at or above the threshold a {\displaystyle a} in the time interval [ 0 , t ] {\displaystyle [0,t]} can be ...
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.