Search results
Results from the WOW.Com Content Network
The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed. This is equivalent to the requirement that once a new element is added, all elements that were added before have to be removed before the new element can be removed.
A double-ended queue is represented as a sextuple (len_front, front, tail_front, len_rear, rear, tail_rear) where front is a linked list which contains the front of the queue of length len_front. Similarly, rear is a linked list which represents the reverse of the rear of the queue, of length len_rear.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. [1] [2] [3] Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan [2] and Jensen et al., [4] d-ary heaps were invented by Donald B. Johnson in 1975. [1]
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
In computer science, a binomial heap is a data structure that acts as a priority queue.It is an example of a mergeable heap (also called meldable heap), as it supports merging two heaps in logarithmic time.
A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]
A priority queue is an abstract data-type similar to a regular queue or stack. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. Priority queues support the following operations: insert: add an element to the queue with an associated priority.