Search results
Results from the WOW.Com Content Network
In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, with all substances in their standard states.
The ΔH° form undergoes discontinuities at a phase transition temperatures of the constituent element(s) and the compound. The enthalpy change for any standard reaction is designated ΔH° rx. Standard molar heat of formation of ZnBr 2 (c,l) from the elements, showing discontinuities at transition temperatures of the elements and the compound.
Standard enthalpy of formation is the enthalpy change when one mole of any compound is formed from its constituent elements in their standard states. The enthalpy of formation of one mole of ethane gas refers to the reaction 2 C (graphite) + 3 H 2 (g) → C 2 H 6 (g).
Enthalpy of formation is defined as the enthalpy change observed in a constituent of a thermodynamic system when one mole of a compound is formed from its elementary antecedents. Enthalpy of combustion is defined as the enthalpy change observed in a constituent of a thermodynamic system when one mole of a substance burns completely with oxygen.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
It may provide or confirm basic enthalpy data needed for the calculation of phase diagrams of metals, via CALPHAD or ab initio quantum chemistry methods. For a binary system composed by elements A and B, a generic Miedema Formula could be cast as Δ H = f ( E l e m e n t A , P h i A , n W S A , V A , E l e m e n t B .
When calculating the heat of formation, all the atoms in the molecule must be accounted for (hydrogen atoms are not included as specific groups). The figure above displays a simple application for predicting the standard enthalpy of isobutylbenzene. First, it is usually very helpful to start by numbering the atoms.
Sodium nitride is the inorganic compound with the chemical formula Na 3 N. In contrast to lithium nitride and some other nitrides, sodium nitride is an extremely unstable alkali metal nitride. It can be generated by combining atomic beams of sodium and nitrogen deposited onto a low-temperature sapphire substrate. [1]