enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since i {\displaystyle i} and − i {\displaystyle -i} are the only complex numbers with a zero real part and a norm (absolute value) equal to 1.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Every power of one equals: 1 n = 1. Powers of zero. For a positive exponent n > 0, ... The limit of e 1/n is e 0 = 1 when n tends to the infinity.

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives ⁠ dr / dx ⁠ = 0 and ⁠ dθ / dx ⁠ = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.

  5. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  6. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail ...

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is the power to which e would have to be raised to equal x. For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1.

  8. Gelfond's constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond's_constant

    In mathematics, the exponential of pi e π, [1] also called Gelfond's constant, [2] is the real number e raised to the power π. Its decimal expansion is given by: e π = 23.140 692 632 779 269 005 72... (sequence A039661 in the OEIS) Like both e and π, this constant is both irrational and transcendental.

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...