Search results
Results from the WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
WolframAlpha (/ ˈ w ʊ l f. r əm-/ WUULf-rəm-) is an answer engine developed by Wolfram Research. [1] It is offered as an online service that answers factual queries by computing answers from externally sourced data. [2] [3]
x 0 │ x 3 x 2 x 1 x 0 3 │ 2 −6 2 −1 │ 6 0 6 └──────────────────────── 2 0 2 5 The entries in the third row are the sum of those in the first two. Each entry in the second row is the product of the x-value (3 in this example) with the third-row entry immediately to the left. The entries ...
Wolfram Alpha: Wolfram Research: 2009 2013: Pro version: $4.99 / month, Pro version for students: $2.99 / month, ioRegular version: free Proprietary: Online computer algebra system with step-by step solutions. Xcas/Giac: Bernard Parisse 2000 2000 1.9.0-99: May 2024: Free GPL: General CAS, also adapted for the HP Prime. Compatible modes for ...
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
By left-multiplication with an appropriate invertible matrix L, it can be achieved that row t of the matrix product is the sum of σ times the original row t and τ times the original row k, that row k of the product is another linear combination of those original rows, and that all other rows are unchanged.