Search results
Results from the WOW.Com Content Network
The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test , test for divergence , or the divergence test . Ratio test
Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
Each test defines a test parameter (ρ n) which specifies the behavior of that parameter needed to establish convergence or divergence. For each test, a weaker form of the test exists which will instead place restrictions upon lim n->∞ ρ n. All of the tests have regions in which they fail to describe the convergence properties of Σa n. In ...
In probability theory and statistics, the Jensen–Shannon divergence, named after Johan Jensen and Claude Shannon, is a method of measuring the similarity between two probability distributions. It is also known as information radius ( IRad ) [ 1 ] [ 2 ] or total divergence to the average . [ 3 ]
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.
The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function x 2 {\displaystyle x^{2}} ) but not an f -divergence.