Search results
Results from the WOW.Com Content Network
For buildings, EN 1991-1-7 also provides strategies to limit the consequences of localised failure caused by an unspecified accidental event. The recommended strategies for accidental actions range from the provision of measures to prevent or reduce the accidental action to that of designing the structure to sustain the action.
Steel is equally strong in tension and compression. Steel is weak in fires, and must be protected in most buildings. Despite its high strength to weight ratio, steel buildings have as much thermal mass as similar concrete buildings. The elastic modulus of steel is approximately 205 GPa. Steel is very prone to corrosion .
Dead loads have small load factors, such as 1.2, because weight is mostly known and accounted for, such as structural members, architectural elements and finishes, large pieces of mechanical, electrical and plumbing (MEP) equipment, and for buildings, it's common to include a Super Imposed Dead Load (SIDL) of around 5 pounds per square foot ...
A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The Ultimate State is a physical situation that involves either excessive deformations sufficient to cause collapse of the component under consideration or the structure as a whole, or deformations exceeding values considered to be the acceptable tolerance.
Steel Design, or more specifically, Structural Steel Design, is an area of structural engineering used to design steel structures. These structures include schools , houses , bridges , commercial centers , tall buildings , warehouses , aircraft , ships and stadiums .
It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required. The dimensional analysis yields units of distance squared per time squared.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
Measuring the compressive strength of a steel drum. In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension (being pulled apart).