Search results
Results from the WOW.Com Content Network
The Guide to the Expression of Uncertainty in Measurement (GUM) [1] is a document published by the JCGM that establishes general rules for evaluating and expressing uncertainty in measurement. [ 2 ] The GUM provides a way to express the perceived quality of the result of a measurement.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The measurement uncertainty budget is determined once and remains constant. With a constant measurement uncertainty budget, complete data records can now be acquired. The measurement uncertainty applies to every single measurement point. If the measurement uncertainty is constant, this simplifies the further processing based on the data records.
In daily life, measurement uncertainty is often implicit ("He is 6 feet tall" give or take a few inches), while for any serious use an explicit statement of the measurement uncertainty is necessary. The expected measurement uncertainty of many measuring instruments (scales, oscilloscopes, force gages, rulers, thermometers, etc.) is often stated ...
Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...