Search results
Results from the WOW.Com Content Network
Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input (or help) of metabolic energy (e.g. ATP, co-transport mechanisms, or active transport mechanisms).
Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) ions have been identified. [1] The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane.
Ion channels are a type of transmembrane channel responsible for the passive transport of positively charged ions (sodium, potassium, calcium, hydrogen and magnesium) and negatively charged ions (chloride) and, can be either gated or ligand-gated channels. One of the best studied ion channels is the potassium ion channel. The potassium ion ...
When ion channels are in a 'closed' (non-conducting) state, they are impermeable to ions and do not conduct electrical current. When ion channels are in their open state, they conduct electrical current by allowing specific types of ions to pass through them, and thus, across the plasma membrane of the cell. Gating is the process by which an ...
Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.
Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na +, K +, Ca 2+, and/or Cl − to pass through the membrane in response to the binding of a chemical messenger (i.e. a ligand), such as a neurotransmitter.
Chloride channels are a superfamily of poorly understood ion channels specific for chloride. These channels may conduct many different ions, but are named for chloride because its concentration in vivo is much higher than other anions. [ 1 ]
If these receptors are ligand-gated ion channels, a resulting conformational change opens the ion channels, which leads to a flow of ions across the cell membrane. This, in turn, results in either a depolarization, for an excitatory receptor response, or a hyperpolarization, for an inhibitory response.