Search results
Results from the WOW.Com Content Network
The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate decreases during the ...
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p. In many situations in aerodynamics and hydrodynamics, the pressure coefficient at a point near a body is independent of body size.
Engine vacuum is the difference between the pressures in the intake manifold and ambient atmospheric pressure. Engine vacuum is a "gauge" pressure, since gauges by nature measure a pressure difference, not an absolute pressure. The engine fundamentally responds to air mass, not vacuum, and absolute pressure is necessary to calculate mass.
In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and ...
Absolute cylinder pressure is used to calculate the dynamic compression ratio, using the following formula: = where is a polytropic value for the ratio of specific heats for the combustion gases at the temperatures present (this compensates for the temperature rise caused by compression, as well as heat lost to the cylinder)
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
A unit injector system, also known as "Pumpe-Düse" (pump-nozzle in German) combines the injector and fuel pump into a single component, which is positioned above each cylinder. This eliminates the high-pressure fuel lines and achieves a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. [188]