Search results
Results from the WOW.Com Content Network
Some types of resolvers include both types, with the 2-pole windings used for absolute position and the multipole windings for accurate position. Two-pole resolvers can usually reach angular accuracy up to about ±5 ′, whereas a multipole resolver can provide better accuracy, up to 10″ for 16-pole resolvers, to even 1″ for 128-pole resolvers.
English: Diagram of revolving-field single phase generator with two poles. As the rotor turns, the lines of force at two poles are cut by the coils inducing current. The output from two coils are "in phase". The direction of current changes to the opposite site every 180 degrees of rotation.
For instance, in the figure example (c), if the poles 2 and 4 are each split into two poles each then the circuit can be described as a 3-port. However, it is also possible to connect generators to pole pairs (1, 3) , (1, 4) , and (3, 2) making 4 C 2 = 6 generators in all and the circuit has to be treated as a 6-port.
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.. In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits.
The number of pole-pairs is 2, so the synchronous speed is: = = A three-phase, 12-pole (6-pole-pair) synchronous motor is operating at an AC supply frequency of 60 Hz. The number of pole-pairs is 6, so the synchronous speed is:
Bipolar toy motor of 1948. Note the three-pole rotor with a bipolar field. A bipolar electric motor is an electric motor with only two (hence bi-) poles to its stationary field. [1] They are an example of the simple brushed DC motor, with a commutator. This field may be generated by either a permanent magnet or a field coil.
Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in Figure 5, this condition is satisfied for values of α ≥ 1.
By increasing the number of pole faces surrounding the Gramme ring, the ring can be made to cut across more magnetic lines of force in one revolution than a basic two-pole generator. Consequently, a four-pole generator could output twice the voltage of a two-pole generator, a six-pole generator could output three times the voltage of a two-pole ...