Search results
Results from the WOW.Com Content Network
This formula also has application in theoretical physics. Namely, in quantum field theory , one uses this formula to calculate the propagator of a spin-1 field. [ 8 ] [ circular reference ] The inverse propagator (as it appears in the Lagrangian) has the form A + u v T {\displaystyle A+uv^{\textsf {T}}} .
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. [3] [4] In category theory, a map may refer to a morphism. [2] The term transformation can be used interchangeably, [2] but transformation often refers to a function from a set to itself.
In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
An example is the linear map that takes any point with coordinates (,) to the point (+,). In this case, the displacement is horizontal by a factor of 2 where the fixed line is the x-axis, and the signed distance is the y-coordinate. Note that points on opposite sides of the reference line are displaced in opposite directions.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.