Search results
Results from the WOW.Com Content Network
The rate of weathering is sensitive to factors that change how much land is exposed. These factors include sea level , topography , lithology , and vegetation changes. [ 4 ] Furthermore, these geomorphic and chemical changes have worked in tandem with solar forcing, whether due to orbital changes or stellar evolution, to determine the global ...
Furthermore, chemical and physical weathering often go hand in hand. For example, cracks extended by physical weathering will increase the surface area exposed to chemical action, thus amplifying the rate of disintegration. [6] Frost weathering is the most important form of physical weathering. Next in importance is wedging by plant roots ...
The primary source of silicate to the terrestrial biosphere is weathering. The process and rate of weathering is variable, depending on rainfall, runoff, vegetation, lithology, and topography. Given sufficient time, rainwater can dissolve even a highly resistant silicate-based mineral such as quartz. [13]
Tectonic subsidence is the sinking of the Earth's crust on a large scale, relative to crustal-scale features or the geoid. [1] The movement of crustal plates and accommodation spaces produced by faulting [2] brought about subsidence on a large scale in a variety of environments, including passive margins, aulacogens, fore-arc basins, foreland basins, intercontinental basins and pull-apart basins.
The amount of gas available to be exsolved and the concentrations of gases in the melt also control ascension of the magma. If the melt contains enough dissolved gas, the rate of exsolution will determine the magmas rate of ascension. Mafic melts contain low levels of dissolved gases whereas felsic melts contain high levels of dissolved gases.
Primordial heat is the heat lost by the Earth as it continues to cool from its original formation, and this is in contrast to its still actively-produced radiogenic heat. The Earth core's heat flow—heat leaving the core and flowing into the overlying mantle—is thought to be due to primordial heat, and is estimated at 5–15 TW. [23]
Understanding the principle of isostasy is a key element to understanding the interactions and feedbacks shared between erosion and tectonics. The principle of isostasy states that when free to move vertically, lithosphere floats at an appropriate level in the asthenosphere so that the pressure at a depth of compensation in the asthenosphere well below the base of the lithosphere is the same. [3]
Weathering and erosion break the original rock down into smaller fragments and carry away dissolved material. This fragmented material accumulates and is buried by additional material. While an individual grain of sand is still a member of the class of rock it was formed from, a rock made up of such grains fused together is sedimentary.