enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    In this example, the remainder is 23. Moreover, this remainder is the only possible positive value of n that is less than 105. The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers.

  3. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  4. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  6. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by

  7. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial. [3]

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Mason–Stothers theorem (polynomials) Polynomial remainder theorem (polynomials) Primitive element theorem (field theory) Rational root theorem (algebra, polynomials) Solutions of a general cubic equation ; Solutions of a general quartic equation ; Strassmann's theorem (field theory) Sturm's theorem (theory of equations)

  9. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Using the Chinese remainder theorem, it suffices to evaluate modulo different primes , …, with a product at least . Each prime can be taken to be roughly log ⁡ M = O ( d m log ⁡ q ) {\displaystyle \log M=O(dm\log q)} , and the number of primes needed, ℓ {\displaystyle \ell } , is roughly the same.