enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  4. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  5. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The reason the sample covariance matrix has in the denominator rather than is essentially that the population mean ⁡ is not known and is replaced by the sample mean ¯. If the population mean E ⁡ ( X ) {\displaystyle \operatorname {E} (\mathbf {X} )} is known, the analogous unbiased estimate is given by

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    The Kalman filter tracks the average state of a system as a vector x of length N and covariance as an N × N matrix P. The matrix P is always positive semi-definite and can be decomposed into LL T. The columns of L can be added and subtracted from the mean x to form a set of 2N vectors called sigma points. These sigma points completely capture ...

  7. Random matrix - Wikipedia

    en.wikipedia.org/wiki/Random_matrix

    In multivariate statistics, random matrices were introduced by John Wishart, who sought to estimate covariance matrices of large samples. [15] Chernoff-, Bernstein-, and Hoeffding-type inequalities can typically be strengthened when applied to the maximal eigenvalue (i.e. the eigenvalue of largest magnitude) of a finite sum of random Hermitian matrices. [16]

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  9. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q: