enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively.

  3. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the ...

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Rank (linear algebra) In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4]

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  6. Khatri–Rao product - Wikipedia

    en.wikipedia.org/wiki/Khatri–Rao_product

    Khatri–Rao product. In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1][2][3] in which the ij -th block is the mipi × njqj sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.

  7. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    In practice, we can construct one specific rank factorization as follows: we can compute , the reduced row echelon form of .Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of .

  8. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    The second proof is based on the linear algebra concepts of change of basis in a vector space and the determinant of a linear map. In the process, it computes the LU decomposition of the Vandermonde matrix. The third proof is more elementary but more complicated, using only elementary row and column operations.

  9. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    Orthogonal complement. In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in . Informally, it is called the perp, short for perpendicular complement.