Search results
Results from the WOW.Com Content Network
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .
In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .
The method of iteratively reweighted least squares (IRLS) is used to solve certain optimization problems with objective functions of the form of a p-norm: = | |, by an iterative method in which each step involves solving a weighted least squares problem of the form: [1]
The method of least squares is a prototypical M-estimator, since the estimator is defined as a minimum of the sum of squares of the residuals.. Another popular M-estimator is maximum-likelihood estimation.
[4] In regression and time-series modelling, basic forms of models make use of the assumption that the errors or disturbances u i have the same variance across all observation points. When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity , and this behaviour will be reflected in the residuals u ^ i ...
The normal equations can be derived directly from a matrix representation of the problem as follows. The objective is to minimize = ‖ ‖ = () = +.Here () = has the dimension 1x1 (the number of columns of ), so it is a scalar and equal to its own transpose, hence = and the quantity to minimize becomes
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...