enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  3. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  4. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.

  5. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .

  6. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, [1] semiparametric regression [1] and functional data analysis. [2] In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity.

  7. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    The normal equations can be derived directly from a matrix representation of the problem as follows. The objective is to minimize = ‖ ‖ = () = +.Here () = has the dimension 1x1 (the number of columns of ), so it is a scalar and equal to its own transpose, hence = and the quantity to minimize becomes

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    The least-squares method was published in 1805 by Legendre and in 1809 by Gauss. The first design of an experiment for polynomial regression appeared in an 1815 paper of Gergonne. [3] [4] In the twentieth century, polynomial regression played an important role in the development of regression analysis, with a greater emphasis on issues of ...

  9. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Generalized least squares; Generalized estimating equations; Weighted least squares, an alternative formulation; White test — a test for whether heteroskedasticity is present. Newey–West estimator; Quasi-maximum likelihood estimate