Search results
Results from the WOW.Com Content Network
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group.
Multivariate analysis of covariance; Matrix F-distribution; Mauchly's sphericity test; Mixed model; Mixed-design analysis of variance; Multilevel model; Multilevel regression with poststratification; Multiple abstract variance analysis; Multivariate analysis of variance
In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model , which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.
Some statistical tests, such as the analysis of variance, assume that variances are equal across groups or samples, which can be checked with Bartlett's test. In a Bartlett test, we construct the null and alternative hypothesis. For this purpose several test procedures have been devised.
The formula for the variance of V=φ c is known. [3] In R, the function cramerV() from the package rcompanion [4] calculates V using the chisq.test function from the stats package. In contrast to the function cramersV() from the lsr [5] package, cramerV() also offers an option to correct for bias. It applies the correction described in the ...
The data are in the R data set airquality, and the analysis is included in the documentation for the R function kruskal.test. Boxplots of ozone values by month are shown in the figure. The Kruskal-Wallis test finds a significant difference (p = 6.901e-06) indicating that ozone differs among the 5 months.
While variance-stabilizing transformations are well known for certain parametric families of distributions, such as the Poisson and the binomial distribution, some types of data analysis proceed more empirically: for example by searching among power transformations to find a suitable fixed transformation.