enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]

  3. Buffer solution - Wikipedia

    en.wikipedia.org/wiki/Buffer_solution

    A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. [1] Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical ...

  4. Dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Dissociation_constant

    The concentration of water, [H 2 O], is omitted by convention, which means that the value of K w differs from the value of K eq that would be computed using that concentration. The value of K w varies with temperature, as shown in the table below. This variation must be taken into account when making precise measurements of quantities such as pH.

  5. Phosphate-buffered saline - Wikipedia

    en.wikipedia.org/wiki/Phosphate-buffered_saline

    Add 2.84 mM of HCl to shift the buffer to 7.3 mM HPO 4 2− and 4.6 mM H 2 PO 4 − for a final pH of 7.4 and a Cl − concentration of 142 mM. The pH of PBS is ~7.4. When making buffer solutions, it is good practice to always measure the pH directly using a pH meter. If necessary, pH can be adjusted using hydrochloric acid or sodium hydroxide.

  6. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1. At pH ≤ pK a − 2 the substance is said to be fully protonated and at pH ≥ pK a + 2 it is fully dissociated (deprotonated).

  7. Potassium hydrogen phthalate - Wikipedia

    en.wikipedia.org/wiki/Potassium_hydrogen_phthalate

    The pKa of KHP is 5.4, so its pH buffering range would be 4.4 to 6.4; however, due to the presence of the second acidic group that bears the potassium ion, the first pKa also contributes to the buffering range well below pH 4.0, which is why KHP is a good choice for use as a reference standard for pH 4.00. [8] [9]

  8. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is

  9. Pourbaix diagram - Wikipedia

    en.wikipedia.org/wiki/Pourbaix_diagram

    Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.