Search results
Results from the WOW.Com Content Network
Cogging torque of electrical motors is the torque due to the interaction between the permanent magnets of the rotor and the stator slots of a permanent magnet machine. It is also known as detent or no-current torque. This torque is position dependent and its periodicity per revolution depends on the number of magnetic poles and the number of ...
A detent is a mechanical or magnetic means to resist or arrest the movement of a mechanical device. [1] Such a device can be anything ranging from a simple metal pin to a machine. The term is also used for the method involved. Magnetic detents are most often used to divide a shaft rotation into discrete increments.
These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).
For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: ΣH = 0 and ΣV = 0, and the torque a third equation: Στ = 0. That is, to solve statically determinate equilibrium problems in two-dimensions, three equations are used.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]
Torque density is a measure of the torque-carrying capability of a mechanical component. It is the ratio of torque capability to volume and is expressed in units of torque per volume . Torque density is a system property since it depends on the design of each element of the component being examined and their interconnection.